지수 평활법(Exponential smoothing)

2024. 12. 24. 19:25data 공부/데이터전처리

single exponential smoothing 

 

future expected value = past real value * a + past predicted value * (1-a)

 

  • Forecasting Formula:
    • Ft+1F_{t+1}: Forecast for the next period.
    • XtX_t: Actual value at time tt.
    • FtF_t: Forecast value at time tt.
    • α\alpha: Smoothing constant (0 ≤ α\alpha ≤ 1).
  • Smoothing Constant (α\alpha):
    • Determines the weight of recent observations versus older ones.
    • A higher α\alpha (closer to 1) gives more weight to recent data, making the model more responsive to changes.
    • A lower α\alpha (closer to 0) gives more weight to older data, resulting in a smoother forecast.
  • Initialization:
    • The initial forecast (F1F_1) can be set to the first data point (X1X_1) or the average of the first few observations.
  • Exponential Decay:
    • The method assigns exponentially decreasing weights to past observations, ensuring that recent observations influence the forecast more than older ones.

 

Excel usage
= FORECAST.ETS(target_data, values, timeline, seasonal period, null data management, repeated timeline management)

 

 

'data 공부 > 데이터전처리' 카테고리의 다른 글

Decision tree Classifier  (0) 2024.12.24
엑셀 대시보드 만들기  (0) 2024.12.23
KNN (K-Nearest Neighbors) 알고리즘  (0) 2024.12.20
Logistic Regression  (1) 2024.12.19
리니어 리그레션 및 예측  (1) 2024.12.19